Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

نویسندگان

  • Abigail L Lind
  • Jennifer H Wisecaver
  • Catarina Lameiras
  • Philipp Wiemann
  • Jonathan M Palmer
  • Nancy P Keller
  • Fernando Rodrigues
  • Gustavo H Goldman
  • Antonis Rokas
چکیده

Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Different Secondary Metabolism Gene Clusters Occupied the Same Ancestral Locus in Fungal Dermatophytes of the Arthrodermataceae

BACKGROUND Dermatophyte fungi of the family Arthrodermataceae (Eurotiomycetes) colonize keratinized tissue, such as skin, frequently causing superficial mycoses in humans and other mammals, reptiles, and birds. Competition with native microflora likely underlies the propensity of these dermatophytes to produce a diversity of antibiotics and compounds for scavenging iron, which is extremely scar...

متن کامل

Metabolic Conservation and Diversification of Metarhizium Species Correlate with Fungal Host-Specificity

The ascomycete genus Metarhizium contains several species of insect pathogenic fungi ranging from specialists with narrow host ranges to generalists that can infect diverse invertebrates. Genetic and metabolic conservations and diversifications of Metarhizium species are not well understood. In this study, using the genome information of seven Metarhizium species, we performed a comparative ana...

متن کامل

Genetic Variation within Iranian Iris Species Using Morphological Traits

Iris belongs toIridaceae family and it is monocotyledon. Iris is one of the important ornamental and medicinal plants. 34 iris genotypes (14 species) collected from different provinces of Iran were planted at National Institute of Ornamental Plants (NIOP) Iran. All of the species evaluated for 15 quantitative traits and 30 qualitative traits. Results showed that the highest positive correlation...

متن کامل

Genetic diversity of Neotyphodium fungal endophytes in three Iranian grass species using AFLP molecular markers

Genetic diversity of fungal endophytes, Neotyphodium species, was studied in grasses Festuca arundinacea, F. pratensis and Lolium perenne using AFLP  markers. Fungi were isolated from the host leaf sheaths and Neotyphodium species were selected based on morphological characteristics. To confirm identity of selected fungi belonging to the genus Neotyphodium, polymerase chain reaction was perform...

متن کامل

Genetic Diversity among Plant Pathogenic Streptomyces Strains from Potato Fields in Northwest of Iran

Different species of Streptomyces are common in most types of soil. Some certain species are plant pathogenic especially on potato. This study was conducted to evaluate genetic diversity among some local Streptomyces spp. strains isolated from soil and infected tubers in potato farms in northwest of Iran. Repetitive DNA elements (BOX, ERIC and REP) as genetic markers were used for diversity stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017